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Abstract

The traditional conditions for aggregation of input-output models are shown to be
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1. Introduction

The conditions for an input-output model with aggregated industries to be consistent
with a more fundamental input-output model containing a larger number of
industries have been the subject of many contributions since the initiating note by
Hatanaka(1952). Hatanakas conditions for such a "perfect aggregation" were soon
modified by McManus(1956)2, who stressed the need to distinguish between gross
production and net production and to account for this difference when comparing
the solutions of the aggregated and original models; he derived the necessary and
sufficient conditions in each case. Ever since, the standard approach has been to
consider perfect aggregation of gross productions, even though McManus clearly
states that the conditions for perfect aggregation of net productions are weaker.3 In
this paper I will show that such a "net production approach" is the proper one to
use and that, consequently, the true conditions for perfect aggregation are
considerably weaker than those derived from the standard approach. The same
objection applies to the standard measures of "aggregation bias" used for empirical
work, since such measures are based on a too narrow criterion for unbiased
aggregation.

2. Prerequisites

The basis of the models is the input-output flow tables in value units in a base year;
such tables are outlined in table 1.

Table 1. Notation for the fundamental and aggregated i-o tables.

Fundamental Aggregated

Industries Final
demands

Sum Industries Final
Demands

Sum

Primary
inputs

y’ 0 y’i Primary
inputs

y*’ 0 y*’i

Industries A e x Industries A* e* x*

Sum x’ i’e Sum x*’ i’e*

Note: The symboli is used for the summation vector. The variablesy andx are assumed positive, while
e is assumed nonnegative (so that some elements can be 0).

2The term "perfect aggregation" was introduced by Theil(1957). Other terms used in the literature
for the same concept are "acceptable", "consistent", "admissible", "intrinsic" and "unbiased"
aggregation.

3A fairly recent biblography is given in Olsen(1993).
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The top bar symbol ( ) is consistently used to denote a matrix of coefficients, i. e.
a matrix with elements defined as shares of totals of the base year input-output
table. The hat symbol (^) on a vector indicates a reshaping of the vector into a
square diagonal matrix. The subscript0 is consistently used to denote matrices or
vectors in base year value units. Thus,A=A0(x̂0)

–1 and (as a notational shortcut)
y=ŷ0x̂0

–1.

The fundamental quantity model withn industries is given by

x = Ax + e = (I–A)–1e (1)

y = yx = y(I–A)–1e (2)

provided that(I–A) is regular. Likewise, the aggregated quantity model withn*

industry groups (main branches) is given by

x* = (I–A *)–1e* (3)

y* = y*x* = y*(I–A*)–1e* (4)

where, using the (n*×n) aggregation matrixG such thatx0
*=Gx0 andA*

0=GA0G’ ,

A* = A*
0x̂0

*–1 = GAW x’ where (5)

Wx = x̂0
*–1Gx̂0 (6)

y* = Gŷ0G’x̂ 0
*–1 = GyWx’ (7)

e* = Ge (8)

The aggregatorG is (as usual) taken to be a simple grouping matrix, which means
thatgij=1 if industry j is in branchi, gij=0 otherwise; flows are therefore aggregated
simply by summation, while indexes such as columns of input coefficients (and
prices below) are aggregated by weighting using matrices such asWx (in which
wij=xj /x*

i if industry j is in branchi, wij=0 otherwise).4 The standard problem of
aggregation in input-output models is caused by the fact that in general the gross
productionx* from (3) is not equal toGx from (1), even though this equality holds
by definition in the base year.

4Simple and weighted grouping matrices such asG andWx, respectively, are treated in more detail
in Olsen(1993). Note thatGW’x=I and that, therefore,W’x is a generalized inverse ofG. A third type
of grouping matrix, such asWa introduced in (13.b) fulfillingWaW’x=I , will be termed double-
weighted grouping matrices.
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The early contributions adressed the question whether to use gross productionx or
to use only net production defined as production minus the supplies from the
industry to itself, i.e. (in the case of the aggregated system)5

x*
n = x*–a* = (I– −a*)x* (9)

wherea* and −a* are a vector and a matrix of the diagonal elements in matricesA*

and A*, respectively. It is clear from (9) that in the model (1) net production is
merely a rescaling of gross production. Since, in a net production system, the intra-
branch supplies are eliminated, the system can be formed from table 1 by setting
the diagonal elements of matrixA* to 0 and simultaneously subtracting them from
the marginals; the coefficient matrix of the net system is found like in (5), which
amounts to a rescaling of the columns of the non-diagonal part ofA*, using (9):

Ã* = (A*
0–â*

0)x̂
*
n0

–1 = (A*–−a*)(I– −a*)–1 (10)

The choice of formulation - gross or net - of the system is of no real significance,
since the two systems produce the same relations between primary inputs and final
demands:

y*(I–A*)–1 = ŷ0
*(x̂0

*–A0
*)–1 = ỹ*(I–Ã *)–1 (11)

using (4) and the notationỹ*=ŷ0
*x̂n

*
0
–1. In other words, the choice of formulation is

merely a question of a choice between the identical matricesx̂0
*–A0

* and
x̂0

*–â0
*–(A0

*–â0
*); but of course, the vector of production used as an intermediate

variable is scaled differently in the two cases, as in (9).

The question of gross or net production is nevertheless important in relation to the
aggregation problem. This is because a number of flows, which are between
different industries in the fundamental system, become purely internal flows in the
main branches of the aggregated system. Following McManus(1956) I will address
this question by decomposing the coefficient matrixA into two parts: The partAd

containing flows that will end up in the diagonal of the aggregated matrix, and its
complementary partAc=A–Ad, so that from (5)

A* = G(Ac + Ad)Wx’ = GAcWx’ + GAdWx’ = A*
c + −a* (12)

where−a*=GAdWx’ is the diagonal part ofA* andA*
c=GAcWx’ is the off-diagonal part.

Note that matrixAd will be block-diagonal, whereas matrixAc will contain zeros

5Similar formulae hold for the fundamental system, but they are of no relevance here. The
fundamental system can be interpreted as a net or gross system according to taste; all formulae are
valid in either case.



8

in the same diagonal blocks. McManus shows that perfect aggregation in the "net
production sense" thatx*

n=G(I–Ad)x requires conditions on matrixAc only, while
perfect aggregation in the "gross production sense" thatx*=Gx requires additional
conditions on matrixAd. His findings will be in the core of the present paper, since
I will claim that the "net production" approach is the relevant one and that the
correct condition for perfect aggregation therefore is

x*
n=Gxn wherexn = (I–A d)x ⇔ (13.a)

x*=Wax whereWa = (I– −a*)–1G(I–Ad) (13.b)

using (9), rather than the traditional conditionx*=Gx.6 In other words, gross
productions should be aggregated using a weighting rather than simple summation,
thereby adjusting for possibly different intensities of intra-branch flows in those
fundamental industries grouped into the same main branch; the element(k,j) of
matrix Wa is ∑i∈k (1–−aij )/(1–−a*

k) for j∈ groupk, 0 otherwise.

It will prove appropriate to define the "net" version of the weight matrixWx from
(6) as7

W̃x = x̂n
*
0
–1Gx̂n0 = (I– −a*)–1Wx(I–Ad’) (14)

3. Perfect aggregation of industries in the quantity model

The idea behind the concept of perfect aggregation is that the solutions for the
endogenous variables from the aggregated model should be the same as the
aggregated solutions for the endogenous variables from the fundamental model. But
since the input-output model determines both primary inputs, gross production and
net production, we are left with three criteria which are possibly inconsistent. I will
show that the "net production" approach of McManus is the only criterion yielding
the same conditions for perfect aggregation for all three types of endogenous
variables.

6The matrixWa is a common (double-weighted) grouping matrix though it does not immediately
appear so. This is becauseGAd=Gŵd where w’d=i’A d is a vector showing for each industry the
coefficient for total inputs from industries belonging to the same main branch, so that elementj of w’d
is ∑i∈k

−aij for j∈groupk. Thus,Wa=(I– −a*)–1G(I–ŵd). Note thatWaW’x=I .

7The matrixW̃x is a common weighted grouping matrix though it does not immediately appear
so. This is becauseAdW’x = ŵnG’ wherewn = AdW’xi is a vector showing, for each industry, the
coefficient for inputs produced in that industry per unit production in the main branch to which it
belong, so that elementi of wn is ∑j∈k aij /x*

0k for i∈group k. Thus, xn0 = (I–ŵn)x0 and W̃x =
(I– −a*)–1Wx(I–ŵn).
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Definition 1.The aggregation of the quantity model (1)-(2) into (3)-(4) is (weakly)
perfectfor a given set of vectors of final demande if and only if

y* = Gy (15)

i.e. that the two models yield the same vector of primary inputs by the aggregated
industries for that set.

This concept of perfect aggregation is the proper operationalization of the basic idea
outlined above. However, it is possible to define a stronger concept requiring that
that endogenous variables from thefundamentalmodel can be determined from the
aggregated model:

Definition 2. The aggregation of the quantity model (1)-(2) into (3)-(4) is
superperfectfor a given set of vectors of final demand if and only if

y = Wy’y
* , whereWy = ŷ0

*–1Gŷ0 (16)

i.e. that the primary inputs are proportional in the groups ofG and, therefore, that
the two models yield the same vector of primary inputs by the fundamental
industries for that set. It is immediately clear, that

superperfect aggregation is a special case of perfect aggregation, since (16)
implies (15) but not vice versa
the aggregation (5)-(8) is superperfect by definition for all vectorseproportional
to e0

no nontrivial aggregation can be superperfect for arbitrarye, due to the smaller
dimensionality of the aggregated variables.

Following the basic idea I will, in general, seek the conditions for (weakly) perfect
aggregation for arbitrary (nonnegative) aggregated vectorse*=Ge, but results for
other domains and for superperfect aggregation are developed in the process.

Lemma 1.An aggregation of the quantity model is superperfect if and only if

x=Wx’x
*

i.e. the productions are proportional in the groups ofG.

Proof: y = Wy’y
* =ŷ0G’ŷ 0

*–1ŷ0
*x̂0

*–1x* = yWx’x
* ⇔ x = Wx’x

*

using (2), (16), (4), (6), the definitionsy*=ŷ0
*x̂0

*–1, y=ŷ0x̂0
–1 and the fact thaty is

invertible.
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Note that (16) impliesx*=Gx=Wax, sinceGWx’=WaWx’=I , see (13.b) and note 5.

Theorem 1. Superperfect aggregation of quantities.An aggregation of the quantity
model (1),(2) into (3),(4) is superperfect for arbitrarye* if and only if there exists
a matrixZ such that the conditions (17) and (18) are both satisfied:

e = Ze* arbitrarye* (17)

Z(I–A *) = (I–A)W x’ (18)

Proof: From lemma 1, an aggregation is superperfect if and only if

x = Wx’x
* ⇔

(I–A) –1e = Wx’(I–A *)–1Ge

Since the matrix on the left side has rankn while the matrix on the right side has
rank n*<n, this equation can only hold ife obeys at least (n–n*) linear restrictions.
Since we assume thate* can be arbitrary, there must exist a matrixZ such thate
= Ze* for arbitrarye*. Substituting fore above and using (8) we obtain

(I–A) –1Z = W x’(I–A *)–1 ⇔

Z(I–A *) = (I–A)W x’

If all the elements inê0
* are nonzero, then a valid choice forZ is W’e where8

We = ê0
*–1Gê0 (19)

This may be the only choice ofZ with an economic interpretation.9 I will return
to a deeper analysis of the case of condition (18) whereZ=We in the proof of
theorem 2’ below.

8Matrix We can be extended to cover cases where e.g.e*
0k=0 by assuming that this impliese*

k=0
in general and that columnk of We is a null vector. This case could occur in practice for e.g.
extractive industries.

9From (17) and (8) it is immediately seen that the matrixZ must satisfyGZ=I , and of course
e0=Ze0

*; if, in addition, Z is required to be nonnegative and of full rank, then necessarilyZ=We, see
Olsen(2001, note 8).
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Using the definitions from (12) and (13) the main result on perfect aggregation is,
however

Theorem 2. Perfect aggregation of quantities. The four conditions (20.a)-(20.d) are
equivalent

y* = Gy for arbitrarye (20.a)

x*
n = Gxn for arbitrarye (20.b)

x* = Wax for arbitrarye (20.c)

GAcWx’W a = GAc (20.d)

Proof: McManus(1956) has shown the equivalence of (20.b) and (20.d).10 The
equivalence of (20.b) and (20.c) follows from (9). It remains to show that they are
equivalent to (20.a):

Gy = y* for arbitrarye ⇔

Gy(I–A) –1 = y*(I–A*)–1G ⇔

y*–1Gy(I–A) –1 = (I–A*)–1G ⇔

(I–A*)y*–1Gy = G(I–A) ⇔

(I– −a*–A*
c)y

*–1Gy = G(I–Ad–Ac) ⇔

(I– −a*)y*–1Gy = G(I–Ad) ∧ A*
cy

*–1Gy = GAc ⇔

y*–1Gy = Wa ∧ A*
cWa = GAc

using (12), (13) and realizing that the equations for intra-branch flows and extra-
branch flows are independent of each other, sincey*–1Gy is a (double-weighted)
grouping matrix containing zeros in the elements for extra-branch flows . Condition
(20.d) follows immediately using (12). The equation to the left is omitted from the
theorem since it follows from (20.d) using the identitiesi’A *+y*’=i’ and i’A+y’ =i’
wherei is the summation vector.11

10See McManus(1956, formulae (4b) and (12)).

11Define the vectorxc=x–Ad’i , which is a vector of total extra-branch inputs in industries (different
from the extra-branch outputsxn=x–Adi) and define the adjusted coefficient matricesÃc=Ac0x̂c0

–1 and
ỹ=ŷ0x̂c0

–1. Theni’Ã c+i’ỹ =i’ , and (20.d) can be written in the traditional "Hatanaka" formÃ*G = GÃc

implying that i’ỹ =i’(I–Ã c)=i’–i’Ã *G=i’ỹ *G ⇔ Gỹ=ỹ*G ⇔ ỹ*–1Gỹ=G ⇔ y*–1Gy=Wa. This deduction
also proves the hypothesis in Olsen (2001, note 14) choosingỹ*–1Gỹ as the adjusted weight matrix.
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The interpretation of condition (20.d) is perhaps not immediately clear. But (20.d)
can be rewritten, using (12), (10) and (9),

Ã*G = GAc(I–A d)
–1

= GAc(I–ŵd)
–1

whereÃ* is the aggregated net coefficient matrix, as in (10), andwd=i’A d (see note
5); this is the familiar form of the "Hatanaka" condition, but since it applies to the
extra-branch flows only, the columns of the coefficient matrixAc are rescaled using
(I–ŵd); the intra-branch flows are unrestricted.

The traditional condition for perfect aggregation,x*=Gx, is equivalent to the
combination of (20.d) and the additional condition−a*G=GAd, i.e. that all industries
grouped into the same main branch must have identical coefficients for aggregated
intra-branch flows, see McManus(1956, formula (8)). This unnecessary additional
condition would rule out e.g. "vertical" aggregations (along a product line); note
that from (13.b) it is equivalent to the conditionWa=G confirming that the
traditional condition is a special case of (20).

Though Theorem 2 is a useful result there is still a story left to be told, since it
states the necessary and sufficient conditions for perfect aggregation for arbitrary
fundamental final demand vectorse, whereas the basic idea would demand only that
they were necessary and sufficient for arbitrary aggregated final demandse*.
Clearly, the conditions of theorems 1 and 2 are still sufficient in this case, but they
are not necessary. One reason for this is the possibility ofmixed cases:If, in the
first place, a number of perfect aggregations are possible based on both of the
Theorems 1 and 2, then it is possible that some of the aggregates can be further
aggregated, because some aggregates based on theorem 1 may fulfil the conditions
of theorem 2 and vice versa; such second-level perfect aggregations would not be
detected from the conditions (17), (18) or (20) at the first level.12

12I have been working on the hypothesis that the mixed cases are the only necessary conditions
for arbitrarye* not covered by theorems 1 and 2, but I have not been able to prove or disprove so.
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4. Perfect aggregation of industries in the price model

The input-output price model is strictly dual to the quantity model. Therefore, the
structure of this section is completely the analogous to that of the preceding section,
just with all quantity formulae replaced by the dual price formulae. There is one
significant difference, though, since in practice final demands by industries can be
zero (e.g., for extractive industries), which was not the case for the dual concept of
primary inputs by industries; this special property of the final demands introduces
a new type of aggregation possibilities, but it also complicates the analysis. In this
paper, I will therefore assume that all final demands are positive in the base year,
postponing the treatment of zero final demands to a later occasion.

The price model dual to the fundamental quantity model (1), (2) is

p’ = p’yy(I–A)–1 (21)

p’e = p’ (22)

wherepy, p andpe aren-vectors of price indexes on primary inputs, production and
final demand, respectively. The aggregated price model dual to (3), (4) is

p*’ = p*
y’y

*(I–A *)–1 (23)

p*
e’ = p*’ (24)

wherep*
y, p* andp*

e aren*-vectors of corresponding aggregated price indexes, and
the aggregated exogenousp*

y are defined as fixed-weight aggregates using the base
year weightsWy, as defined in (16):

p*
y’ = p’yW’y (25)

The problem of aggregation in the price models arises because the aggregated prices
p* and p*

e are generally not equal to the fixed-weight aggregatesWxp and Wep,
respectively, even though such equalities hold in the base year (where all prices are
1).

The question of gross versus net production is even less significant in the price
model than in the quantity model, since the price indexes in the net and gross
systems are exactly the same, due to (11). But of course, this fact underpins the
point that the weaker conditions restricting only the extra-branch flows must be
preferred.

Definition 1’. The aggregation of the price model (21)-(22) into (23)-(24) is
(weakly)perfectfor a given set of vectors of primary input pricespy if and only if
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p*
e = Wepe (26)

i.e. that the two models yield the same vector of final demand prices by the
aggregated industries for that set.

Due to the method of aggregation (5)-(7),(25) the aggregation is perfect by
definition for py= py0=i (and for all vectorspy proportional toi), but in general it
is not, and pursuing the basic idea I will seek the conditions for perfect aggregation
for arbitrary (nonnegative) aggregated vectorsp*

y=Wypy.

Though this concept of perfect aggregation is the proper operationalization of the
basic idea, it is, like in the primal case, possible to define a stronger concept
requiring that the endogenous prices from thefundamentalmodel can be determined
from the aggregated model:

Definition 2’. The aggregation of the price model (21)-(22) into (23)-(24) is
superperfectfor a given set of vectors of primary input prices if and only if

pe = G’p*
e (27)

i.e. that the two models yield the same vector of prices on final demand by the
fundamental industries for that set. It is immediately clear that, as in the primal
case,

superperfect aggregation of prices is a special case of perfect aggregation of
prices, since (27) implies (26) but not vice versa.
the aggregation (23)-(25) is superperfect for all vectorspy proportional topy in
the base year (which is the unit vectori)
no nontrivial aggregation can be superperfect for arbitrarypy, due to the smaller
dimensionality of the aggregated variables.

Following the basic idea I will seek the conditions for (weakly) perfect aggregation
for arbitrary aggregated primary input price vectorsp*

y, but results for other domains
and for superperefect aggregation are developed in the process.

Lemma 1’.An aggregation of the price model is superperfect if and only if

p = G’p*

i.e. the production prices are proportional in the groups ofG.

Proof: Follows immediately from (27) using (22) and (24).
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Theorem 1’. An aggregation of the price model (21),(22) into (23),(24) is
superperfect for arbitraryp*

y if and only if there exists a matrixQ such that the
conditions (28) and (29) are both satisfied:

p’y = p*
y’Q arbitraryp*

y (28)

(I–A*)y*–1Qy = G(I–A) (29)

Proof:
Is completely dual to the proof of theorem 1 and therefore omitted.

A valid choice forQ would be the matrixG, in which case (29) is equivalent to the
condition (20.d) of Theorem 2. This may be the only economically meaningful
choice ofQ.13

Theorem 2’. Perfect aggregation of prices.The three conditions (30.a)-(30.c) are
equivalent

p*
e’ = p’eW’e arbitrarypy (30.a)

p*’ = p’W̃ ’x arbitrarypy (30.b)

W̃’xGAcWx’ = AcWx’ (30.c)

Proof:14

p’eW’e = p*
e’ arbitraryp’y ⇔

p’W’e = p*’ arbitraryp’y ⇔

y(I–A)–1W’e = yWx’(I–A *)–1 ⇔

(I–A) –1W’e = Wx’(I–A *)–1 ⇔

13From (25) and (28) it is immediately seen that the matrixQ must satisfyQW’y=I and, since price
indexes are 1 in the base year, that the column sums ofQ must be 1. If, in addition,Q is required
to be nonnegative (which is equivalent to a requirement of nonnegative prices) and of full rank, then
necessarilyQ=G, see Olsen(2001, note 12).

14The proof is completely dual to the proof of theorem 2.
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W’e(I–A *) = (I–A)W x’ ⇔

W’e(I–
−a*–GAcWx’) = (I–A d–Ac)Wx’ ⇔

W’e(I–
−a*) = (I–Ad)Wx’ ∧ W’eGAcWx’ = A cWx’ ⇔

W’e = (I–Ad)Wx’(I–
−a*)–1 = W̃’x ∧ W̃’xGAcWx’ = AcWx’

which proves the equivalence of (30.a) and (30.c) immediately, and (30.b)
substituting (24) andW̃’x=W’e into (30.a). The equation to the left is omitted from
the theorem since it follows from (30.c) using the identitiesA*

ci+e*=x*
n andAci+e=xn

wherei is the summation vector.15

The interpretation of condition (30.c) is perhaps not immediately clear; however,
it can be written, using (6) and (12)

W̃’xA
*
c0 = Ac0G’

whereA*
c0=GAc0G’ (=A*

0–â*
0) is the aggregated net flow matrix in the base year.

Thus, the semi-aggregated matrix of extra-branch flows,Ac0G’ , must have
proportional rows within the groups ofG. This is clearly a dual form of the
"Hatanaka" conditions, but like in the primal case the restriction applies to the
extra-branch flows only; the intra-branch flows are unrestricted.16

As in the primal case of the quantity model, there is still a story left to be told,
since theorem 2’ states the necessary and sufficient conditions for perfect
aggregation for arbitrary fundamental primary input pricespy, whereas the basic
idea would demand only that they were necessary and sufficient for arbitrary
aggregated primary input pricesp*

y. Clearly, the conditions of theorems 1’ and 2’
are still sufficient in this case, but they are not necessary. As in the case of the
quantity models, a reason for this is the possibility ofmixed cases.17

15Since (30.c) can be writtenW̃’xAc
* = AcWx’ using (12), andAc

*x*=x*
n–e*, they imply that

W̃’xAc
*x*=W̃’x(x

*
n–e*) ⇔ AcWx’x

*
0=W̃’x(x

*
n0–e*

0) ⇔ Ac0i=xn0–W̃’xe
*
0 ⇔ xn0–e0=xn0–W̃’xe

*
0 ⇔ e0=W̃’xe

*
0 ⇔

W̃’x=W’e. This also proves the hypothesis in Olsen(2001, note 11).

16The more conventional price aggregation formulap*’=p’W’x applies only in the special case
where, in addition to (30.c),W̃’xâ

*
0=Ad0Gx’ holds; this in turn would imply thatW’x=W̃’x, from (14). This

reflects that if only (30.c) hold, then the price of the diagonal flow is not identical to the output price.

17I have been working on the hypothesis that the mixed cases are the only necessary conditions
not covered by theorems 1’ and 2’, but I have not been able to prove or disprove so.



17

5. General perfect aggregation of input-output models and bias measures

The results concerning quantity and price models are now combined to yield the
general conditions for aggregation of a dual pair of input-output models.

Definition 3. The aggregation of a dual pair of input-output quantity and price
models (1),(2),(21),(22) into the aggregated models (3),(4),(23),(24) isperfectfor
a given set of vectors of final demandse and primary input pricespy if and only
if the two models yield the same vector of primary inputs and final demand prices
by the aggregated industries for that set, i.e. that

y* = Gy

p*
e = Wep

Theorem 3.A sufficient condition for perfect aggregation of a dual pair of input-
output price and quantity models is ((31)∧(20))∨((30)∧(32)), where

p’y = p*
y’G arbitraryp’y (31)

e = W̃’xe
* arbitrarye* (32)

Proof: Follows from the fact that (30) fulfils (18) and (32) fulfils (17) implying that
the aggregation of quantities is superperfect and the aggregation of prices is perfect;
likewise, (20) fulfils (29) and (31) fulfils (28) implying that the aggregation of
prices is superperfect and the aggregation of quantities is perfect.

Again there is a possibility of mixed cases.

This result completes the structural interpretation of the result of Olsen(1993) that
in general perfect aggregration requires either proportional quantities or identical
prices (or both).18

The relaxation of the traditional conditions into the weaker conditions of theorem
3 is not just a theoretical exercise. While the traditional conditions allow only
"horizontal" aggregation (of different product chains), the relaxation of the
conditions of intra-branch supplies opens the possibilities of "vertical" aggregation
(along a single product chain), which are quite relevant in practice. However, even
after this relaxation few empirical input-output models will satisfy the conditions
exactly. Instead, the case of perfect aggregation is used as a baseline point for

18Note that the conditions of theorem 3 imply thatWa=y*–1Gy and W̃’x=W’e, as shown in the
proofs of theorems 2 and 2’, respectively.
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measuring the aggregation bias, which is traditionally defined asβx=x*–Gx and
should be evaluated for relevant values of final demande. However, an immediate
consequence of theorems 1 and 2 is that this measure should properly be redefined
as19

βx = x* – Wax (33)

enabling many more possibilities of good aggregations, supposedly of the "vertical"
type. Alternatively, the bias could be measured on the primary inputs instead, as

βy = y* – Gy (34)

which will yield similar results, due to theorem 2.

A complete evaluation of an aggregation should also include the price biases
defined as eitherβp=p*–W̃xp or βe=p*–Wep.

A commonly applied measure of aggregation error was defined by Theil(1957) as
the "first order bias"β1=A*G–GA. This measure should not be used since if the
domain ofe is restricted it is not related to the general quality of an aggregation in
any simple manner, see Olsen(2001); this is unfortunate, since in practice the
domain of e is restricted by consumer preferences etc. At least the first order
measure should be redefined asβ1=A*

cWa–GAc, from (20.d).

6. Conclusions

The standard conditions for perfect aggregation of input-output models are too
narrow, since they require unnecessary restrictions on the intra-branch flows.
Instead, the general conditions were derived, leading to a revised definition of
aggregation bias meaures. The use of the commonly applied "first order aggregation
bias" measure is not recommended.

19If very a large number of possible aggregations is analyzed it could be a problem that the
computation of matrixWa is slightly more complicated than the usual aggregatorG. This could be
addressed by using the approximationβx2=x*–y*–1Gyx, since in case of perfect aggregation the two
measures are identical and zero.
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